Prof. Dr. Peter Koepke, Dr. Philipp Schlicht Problem sheet 11

Definition. Suppose that S is an uncountable set and $\kappa > \omega$ is a cardinal. Suppose that $A \subseteq [S]^{<\kappa} = \{X \subseteq S \mid |X| < \kappa\}$ or $A \subseteq [S]^{\kappa} = \{X \subseteq S \mid |X| = \kappa\}$.

- (1) A is unbounded if for all $x \in [S]^{<\kappa}$ (or $[S]^{\kappa}$), there is some $y \in A$ with $x \subseteq y$.
- (2) A is closed if for all \subseteq -chains $(x_{\alpha})_{\alpha < \gamma}$ in $[S]^{<\kappa}$ (or $[S]^{\kappa}$), i.e. $(x_{\alpha})_{\alpha < \gamma}$ with $x_{\alpha} \subseteq x_{\beta}$ for $\alpha < \beta$, if $\bigcup_{\alpha < \gamma} x_{\alpha} \in [S]^{<\kappa}$ (or $[S]^{\kappa}$) then $\bigcup_{\alpha < \gamma} x_{\alpha} \in A$.
- (3) A is stationary if $A \cap C \neq \emptyset$ for every club (closed unbounded) $C \subseteq [S]^{<\kappa}$ (or $[S]^{\kappa}$).

Problem 39 (6 Points). Suppose that $\kappa \leq \lambda \leq \mu$ are uncountable regular cardinals. For $Y \subseteq [\mu]^{<\kappa}$, the *projection* of Y to λ is defined as

$$Y_{\lambda} = \{ y \cap \lambda \mid y \in Y \}.$$

For $X \subseteq [\lambda]^{<\kappa}$, the *lifting* of X to μ is defined as

$$X^{\mu} = \{ x \in [\mu]^{<\kappa} \mid x \cap \lambda \in X \}.$$

Show

- (a) If S is stationary in $[\mu]^{<\kappa}$, then S_{λ} is stationary in $[\lambda]^{<\kappa}$.
- (b) If C is club in $[\mu]^{<\kappa}$, then C_{λ} contains a club in $[\lambda]^{<\kappa}$.
- (c) If S is stationary in $[\lambda]^{<\kappa}$, then S^{μ} is stationary in $[\mu]^{<\kappa}$.

(*Hint: Work with clubs of the form* C_f *for* $f: [S]^{<\omega} \to [S]^{<\kappa}$ *as in the lecture.*)

Problem 40 (6 Points). Suppose that $\kappa \leq \lambda$ are uncountable regular cardinals. If $(X_{\alpha})_{\alpha < \lambda}$ is a sequence of subsets of λ , the diagonal intersection is defined as

$$\triangle_{\alpha < \lambda} X_{\alpha} = \{ x \in [\lambda]^{<\kappa} \mid x \in \bigcap_{\alpha \in x} X_{\alpha} \}.$$

Show

- (a) The club filter on $[\lambda]^{<\kappa}$ is closed under diagonal intersections.
- (b) If $S \subseteq [\lambda]^{<\kappa}$ is stationary and $f: S \to \lambda$ is *regressive*, i.e. $f(x) \in x$ for all $x \in S$, then there is a stationary set $S' \subseteq S$ such that $f \upharpoonright S'$ is constant.

Problem 41 (2 Points). A forcing $(P, \leq, 1)$ satisfies Axiom A if there is a collection $(\leq_n)_{n\in\omega}$ of partial orderings of P such that $p \leq_0 q$ implies $p \leq q$, for all $n \ p \leq_{n+1} q$ implies $p \leq_n q$, and the following conditions hold.

(i) (Fusion) If $(p_n)_{n \in \omega}$ is a sequence such that $p_0 \ge_0 p_1 \ge_1 p_2...$, then there is a condition q such that $q \le_n p_n$ for all n.

- $\mathbf{2}$
- (ii) For every $p \in P$, every n, and every name $\dot{\alpha}$ for an ordinal, there is a condition $q \leq_n p$ and a countable set C such that $q \Vdash_P \dot{\alpha} \in \check{C}$.

Show

- (a) Every c.c.c. forcing satisfies Axiom A.
- (b) Every ω_1 -closed forcing satisfies Axiom A.

Problem 42 (6 Points). Suppose that P is a forcing, $p \in P$, and λ is a cardinal. Consider the following game $G_{\lambda}(P,p)$ for two players with ω moves. In round n, player I plays a name $\dot{\alpha}_n \in H_{\lambda}$ for an ordinal and then player II plays a countable set C_n of ordinals. Player II wins if there is a condition $q \leq p$ with

$$q \Vdash_P \forall n \; \dot{\alpha}_n \in \bigcup_{m \in \omega} C_m.$$

A *strategy* for player II is a function which determines the next move of II from the sequence of previous moves. A *winning strategy* for player II is a strategy for II such that II wins for all plays of player I.

Now suppose that P satisfies Axiom A. Show that player II has a winning strategy in the game $G_{\lambda}(P, p)$ for all $p \in P$.

Please hand in your solutions on Wednesday, January 22 before the lecture.